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• Context and definition of discrete shock profiles

• Existence results
• Stability of discrete shock profiles

• Definition of the nonlinear orbital stability and overview of results
• Main result : Spectral stability implies linear orbital stability
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Conservation laws and shocks

We consider a one-dimensional scalar conservation law

∂tu + ∂x f (u) = 0, t ∈ R+, x ∈ R,
u : R+ × R→ R,

(1)

where the flux f : R→ R is a smooth function.

The result that will be presented also holds for systems of conservations
laws.

This type of PDE tends to have solutions with discontinuities.

Larger goal: We want to know if numerical schemes obtained by
discretizing (1) can approach correctly those discontinuous solutions.
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We consider two distinct states u−, u+ ∈ R2 and a speed s ∈ R. The
function u defined by

∀t ∈ R+,∀x ∈ R, u(t, x) :=

{
u− if x < st,

u+ else,

is a weak solution of the scalar conservation law if and only if

f (u−)− f (u+) = s(u− − u+). (Rankine-Hugoniot condition)

It is a Lax shock when

f ′(u+) < s < f ′(u−).

The main result of the presentation will focus on steady Lax shocks, i.e.
when s = 0.
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Conservative finite difference schemes

We consider a conservative explicit finite difference scheme

∀n ∈ N, un+1 = Nun

where :

• u0 ∈ RZ is the initial condition.

• The nonlinear discrete evolution operator N : RZ → RZ is defined
for u = (uj)j∈Z ∈ RZ and j ∈ Z as

N (u)j := uj − ν (F (ν; uj−p+1, . . . , uj+q)− F (ν; uj−p, . . . , uj+q−1)) .

• The numerical flux F :]0,+∞[×Rp+q → Rd is a smooth function.

• The integers p, q ∈ N\ {0} give the size of the stencil of the scheme.

• We fix ν = ∆t
∆x > 0 the ratio between the time and space steps.
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Assumptions:

• ∀u ∈ R, F (ν; u, . . . , u) = f (u) (consistency condition)

• We choose ν which must satisfy a CFL condition

∀u ∈ U , −q ≤ νf ′(u) ≤ p

for some neighborhood U of the states u±.

• We assume to have linear-`2 stability of the scheme about all the
states u ∈ U .

• The scheme introduces numerical viscosity. In the present
presentation, we consider a first order scheme. This excludes
dispersive schemes like for instance the Lax-Wendroff scheme.
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Example : We can consider the Burgers equation (f (u) = u2

2 ) and the
shock associated to the states u− = 1 and u+ = −1. For the numerical
scheme, we consider the modified Lax Friedrichs scheme

∀u ∈ RZ,∀j ∈ Z, N (u)j :=
uj+1 + uj + uj−1

3
− ν f (uj+1)− f (uj−1)

2
.
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Discrete shock profiles

Discrete shock profile (DSP): A discrete shock profile is a solution of the
numerical scheme of the form

∀n ∈ N,∀j ∈ Z, unj = u(j − sνn)

where the function u : Z + sνZ→ R verifies that

u(x) →
x→±∞

u±.

Stationary discrete shock profiles (SDSP) are sequences
u = (uj)j∈Z ∈ RZ that satisfy

N (u) = u and uj →
j→±∞

u±.
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Example : We consider the initial condition (mean of the standing shock
on each cell

[
(j − 1

2 )∆x , (j + 1
2 )∆x

[
)

∀j ∈ Z, u0
j :=


1 if j ≤ −1,
0 if j = 0,
−1 if j ≥ 1.
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A desirable feature of the numerical scheme should be that stable shock
waves for the conservation laws should yield stable DSPs for the
numerical scheme. This separates the theory surrounding DSPs in two
parts:

Existence of DSPs Stability of DSPs

From now on we will focus on elements of theory surrounding stationary
discrete shock profiles (s=0).
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Existence results on SDSPs

Example : We consider the same initial condition u0 as before but add a
mass δ at j = 0. We look at the limit of the solution of the numerical
scheme.
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For standing Lax shocks, one aims to have the existence of a
differentiable one-parameter family (uδ)δ∈]−ε,ε[ of SDSPs.

• Jennings, Discrete shocks (1974)
• scalar case
• for shocks satisfying Oleinik’s E-condition
• conservative monotone scheme

• Majda and Ralston, Discrete Shock Profiles for Systems of
Conservation Laws (1979)

• system case
• weak Lax shocks
• first order scheme

• Michelson, Discrete shocks for difference approximations to systems
of conservation laws (1984)

• extension of Majda-Ralston for third order scheme

• Different cases: Smyrlis (1990), Liu-Yu (1999), Serre (2004) etc...
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Stability of discrete shock profiles

The end goal would be to prove a property of nonlinear orbital stability
for the DSPs:

For small admissible perturbations h, prove that the solution un of the
numerical scheme for the initial condition u0 = u + h converges towards
the set of translations of the DSP

{
uδ, δ ∈]− ε, ε[

}
.

We are going to present a possible first step towards a quite general
result of nonlinear orbital stability.

13 / 33



Known stability results

• Jennings, Discrete shocks (1974)
• scalar case
• conservative monotone scheme
• nonlinear orbital stability for `1 perturbations

• Liu-Xin, L1-stability of stationary discrete shocks, (1993)
• system case
• Lax-Friedrichs scheme
• weak Lax shocks
• zero mass perturbation (dropped in Ying (1997))

• Michelson, Stability of discrete shocks for difference approximations
to systems of conservation laws, (2002)

• system case
• weak Lax shocks
• First and third order schemes

• Different cases: Smyrlis (1990), Liu-Yu (1999), etc...

One would hope to prove a result of nonlinear orbital stabilty in the
system case, for a fairly large class of numerical schemes and with no
smallness assumption on the amplitude of the shock. 14 / 33



The first idea

Our first goal is to study the semigroup associated to the operator
L obtained by linearizing N about the SDSP u.

We introduce a zero mass perturbation h0 ∈ `1(Z). We then define

v0 = u + h0

and
∀n ∈ N, vn+1 = N (vn). (2)

If we define hn = vn − u, then (2) yields

hn+1 = Lhn + Q(hn, u)

with Q(hn, u) being some "quadratic" term. Duhamel’s formula implies
that a precise understanding of the behavior of the family of operators
(Ln)n≥0 is necessary at this point.
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The second idea

We want to study the Green’s function associated to the operator
L using the techniques developed in Zumbrun-Howard, Pointwise
semigroup methods and stability of viscous shock waves (1998) to

study traveling waves for parabolic PDEs.

Extension of the result of Lafitte-Godillon, Green’s function pointwise
estimates for the modified Lax-Friedrichs scheme, (2003)
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Linearization of the numerical scheme about the constant
states u±

We define the bounded operator L± : `2(Z)→ `2(Z) obtained by
linearizing N about the constant state u± :

∀h ∈ `2(Z),∀j ∈ Z, (L±h)j :=

q∑
k=−p

a±k hj+k .

This is a Laurent operator/convolution operator. Its spectrum is given by

σ(L±) =


q∑

k=−p

a±k e
itk , t ∈ R

 .
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We assume that

∀κ ∈ S1\ {1} ,

∣∣∣∣∣∣
q∑

k=−p

κka±k

∣∣∣∣∣∣ < 1 (`2 − stability)

and that there exists a complex number β± with positive real part such
that

q∑
k=−p

a±k e
itk =

t→0
exp(−if ′(u±)νt−β±t2+O(|t|3)). (Diffusivity condition)

(see fondamental contribution of [14])

S1

σ(L+) ∪ σ(L+)
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Green’s function associated to the operator L+

The Gaussian behavior has been studied thoroughly in recent extensions
on the local limit theorem (see [3, 12, 2, 1]).
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Linearization of the numerical scheme about the SDSP

We define the bounded operator L : `2(Z)→ `2(Z) obtained by
linearizing N about u :

∀h ∈ `2(Z),∀j ∈ Z, (Lh)j :=

q∑
k=−p

aj,khj+k ,

with aj,k → a±k as j → ±∞. We are interested in solutions of the
linearized numerical scheme

∀n ∈ N, hn+1 = Lhn, h0 ∈ `2(Z).

We define the Green’s function

∀n ∈ N,∀j0 ∈ Z, G(n, j0, ·) = (G(n, j0, j))j∈Z := Lnδj0 ∈ `2(Z).
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Observation on the spectrum of L

The elements of the unbounded component of
C\σ(L+)∪σ(L−) are either eigenvalues of L or
are in its resolvent set.

•

•

•

S1

σ(L)

•
1

Spectral stability assumption

• In the article, we construct a so-called Evans function. We assume
that 1 is a simple zero of the Evans function. As a consequence, 1 is
a simple eigenvalue of the operator L.

"N (uδ) = uδ and thus L∂u
δ

∂δ = ∂uδ

∂δ ."

• The operator L has no other eigenvalue of modulus equal or larger
than 1.
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Theorem
Under some more precise assumptions, there exist a positive constant c ,
an element V of ker(Id − L) and an (explicit) function E : R→ R such
that for all n ∈ N\ {0}, j0 ∈ N and j ∈ Z

G(n, j0, j)

=E

(
nf ′(u+)ν + j0√

n

)
V (j) (Excited eigenvector)

+1j∈NO

(
1√
n

exp

(
−c

(
|nf ′(u+)ν − (j − j0)|2

n

)))
(Gaussian wave)

+1j∈−NO

(
1√
n

exp

(
−c

(
|nf ′(u+)ν + j0|

2

n

))
e−c|j|

)
(Exponential residual)

+O(e−cn−c|j−j0|)

where E (x) →
x→−∞

1 and E (x) →
x→+∞

0.

There is a similar result for j0 ∈ −N.
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Green’s function associated to the operator L for j0 = 30
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Case of systems

j

n

j0

Transmitted waves

Reflected waves
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• Using the inverse Laplace tranform with Γ a path that surrounds the
spectrum σ(L), we have

∀n ∈ N\ {0} ,∀j0, j ∈ Z, G(n, j0, j) =
1
2iπ

∫
Γ

zn
(
(zId − L)−1δj0

)
j
dz .

(3)

• We rewrite the eigenvalue problem

(zId − L)u = 0

as a discrete dynamical system

∀j ∈ Z, Wj+1 = Mj(z)Wj . (4)

•

•

•

S1

σ(L)

•
1

B(1, δ)

We are interested in solutions of (4) that tend towards 0 as j tends to
+∞ or −∞ (Jost solutions, geometric dichotomy) and use them to
express find an expression and meromorphically extend
z 7→

(
(zId − L)−1δj0

)
j
through the essential spectrum near 1.

• Using this idea and a good choice of path Γ, we prove sharp estimates
on the temporal Green’s function.
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Theorem
Under the same assumption as for the previous theorem, for p ∈ [1,+∞],
there exists a positive constant C such that

∀h ∈ `1(Z,Cd),∀n ∈ N, min
V∈ker(Id`2−L)

‖Lnh − V ‖`p ≤
C

n
1
2 (1− 1

p )
‖h‖`1 .
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Conclusion/ Perspective / Open questions

About the theorem:

• Bounds uniform in j0
• Very few limitation on the size of the stencil
• The result can be proved for systems
• The result can be proved for higher odd ordered schemes (not only

for first order schemes)

Perspective:

• Can we now prove nonlinear orbital stability ? (at least in the scalar
case?)

• Existence of spectrally stable SDSPs?
• What can we say for moving shocks (with rational speed)?
• What can we say for dispersive schemes? (Lax-Wendroff for

instance)
• Study of the stability for multi-dimensional conservation laws

(Carbuncle phenomenon)
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